
The Nitrogen Manifesto
Lisa Lippincott

lippin@zocalo.net

Abstract
With recent improvements such as Carbon events and the hierarchical control manager, the
Carbon API has usurped much of the role formerly filled by class libraries like MacApp.

But one of Carbon’s strengths, its language-neutral design, is also a weakness. This neutrality
leads it to use weakly typed interfaces, error codes, resource disposal functions, and other
error-prone patterns. While these features make using Carbon possible in C, they make using
Carbon cumbersome in C++.

I propose to create an open-source C++ interface to Carbon. I call this library Nitrogen.

History
Several past attempts to create C++ libraries
for Macintosh programming have been
organized as class libraries: they identify the
central abstractions of the operating system
and attempt to capture each in a C++ class.

I believe that the class libraries have suffered
from the grand scale of their ambitions.
Redesigning the operating system in this manner
is laborious, and such an effort necessarily lags
behind the development of the operating
system. Documenting these class libraries is a
task on par with rewriting Inside Macintosh.
And users of these libraries often find
themselves in situations unanticipated by the
library writers; then they must learn both the
underlying operating system and the quirks of
its interaction with the library.

Nitrogen
The Nitrogen project takes a less ambitious
course. The aim of the project is to translate the
C-oriented Carbon interface into idiomatic C++
without redesigning it. Nitrogen provides a C++
interface to Carbon in much the same way as
other libraries provide interfaces to Pascal,
Lisp, or Ada.

Nitrogen stands on two legs. The first leg is
Cyanogen, a set of rules governing the
relationship between Nitrogen and Carbon. By
meticulously following these rules, Nitrogen
achieves a uniformity which makes it easier to
design, easier to learn, and easier to predict. In

most cases, a user who understands the
Cyanogen rules and a portion of Carbon will be
able to use the corresponding portion of
Nitrogen, or, if that portion has not yet been
written, predict the form it will eventually take
with enough accuracy to implement a
compatible interface.

The second leg upon which Nitrogen stands is
the Nitrogen Nucleus, a library which addresses
in a general way the problem of adapting legacy
C interfaces to C++. The Nitrogen Nucleus
supports and extends the uniformity imposed
by the Cyanogen rules by making those rules
easy to follow, and by providing a central
implementation of the patterns found in the
rules.

The bulk of Nitrogen consists of wrappers for
Carbon types and functions. For each Carbon
type or function in the global namespace, there
is a type or function in the Nitrogen namespace
with the same name. Where practical, a
Nitrogen type is identical to the Carbon type;
otherwise each is implicitly convertible to the
other. A Nitrogen function is similar in effect,
but often differs in signature from its Carbon
namesake, and there are sometimes several
Nitrogen functions or function templates
overloading a single Carbon name.

Nitrogen in Action
Perhaps the best way to grasp the Nitrogen
approach is to see it in action. Here is a
function from a Nitrogen version of Apple’s

The Nitrogen Manifesto , page 1

sample application, Converter:

namespace N = Nitrogen;

void ConvertCommandHandler(WindowRef window)
 {
 double fahrenheitTemp =
 N::Convert<double>(
 N::GetControlData< kControlEditTextCFStringTag >(
 N::GetControlByID(window, fahrenheitControlID)));

 double celsiusTemp = (fahrenheitTemp - 32.0) * 5.0 / 9.0;

 ControlRef celsiusField =
 N::GetControlByID(window, celsiusControlID);

 N::SetControlData< kControlStaticTextCFStringTag >(
 celsiusField,
 N::Convert< N::Owned<CFStringRef> >(celsiusTemp));

 N::DrawOneControl(celsiusField);
 }

This function illustrates the way Nitrogen can
handle many of the mundane aspects of the
Macintosh operating system without
fundamentally changing the design of a
program. In this function, Nitrogen checks for
errors coming from all of the Carbon calls which
signal errors; it releases the two temporary
CFStrings used in the function; and it also
improves the type-safety of this function by
associating the type CFStringRef to the
constants kControlEditTextCFStringTag and
kControlStaticTextCFStringTag.

But where Nitrogen really shines is in the way it
handles callback functions. While Nitrogen
provides functions that take UPP parameters,
it also overloads these functions with templates
which handle the UPP construction and
provide glue for catching exceptions and
navigating weakly-typed interfaces. For
example, here is the installation of a Carbon
event handler:
Point IdealWindowSize
 (const MyContent&, WindowRef);

N::Owned< EventHandlerRef > handler =
 N::InstallWindowEventHandler
 < kEventClassWindow,
 kEventWindowGetIdealSize,

 kEventParamDimensions,
 const MyContent&,
 N::EventParamNameList
 <kEventParamDirectObject>,
 IdealWindowSize >
 (myWindow, myContent);

In this example, Nitrogen constructs glue which
extracts the WindowRef direct object parameter
from the Carbon event, casts and dereferences
the void* parameter to produce const
MyContent&, calls IdealWindowSize, stores the
result into the dimensions parameter of the
event, and converts any exception thrown to an
error code, which it returns.
The Nitrogen Nucleus
The Nitrogen Nucleus is a subset of Nitrogen
devoted to the task of adapting legacy C
interfaces to C++. The principal areas
addressed by the Nucleus are type conversions,
error codes, management of resource ownership,
and saving values for later restoration. While
these facilities provided by the Nucleus are
designed for use with legacy code, many of
them prove useful in wider contexts.

Conversions
Legacy interfaces provide a wealth of
conversion functions, and adapting libraries to

The Nitrogen Manifesto , page 2

each other, or even to the C++ standard library,
creates even more. To organize these functions,
Nitrogen adopts a convention that’s easy for
humans to remember and practical for
templates to make use of: all simple
conversions are performed by a set of function
templates named Convert.

The basic Convert template is

template < class Output, class Input >
Output Convert(const Input&);

In most situations, the input type can be
deduced from the function parameter, so one
may write “Convert<Output>(input)” to
perform a conversion.

The Convert functions use a functor template,
Converter, to perform conversions; conversions
are added by specializing this template. The
default implementation of Converter attempts
an implicit conversion. The Convert function
template is overloaded to allow for more than
one parameter; these additional parameters are
used to initialize the Converter object.

The Nitrogen Nucleus provides specializations
of Converter for range-checked conversions
between numeric types and stream-based
conversions to and from the standard string
types.

Error Codes
The traditional C++ approach to error codes
returned by legacy interfaces has been to define
a class type in which to wrap the error code,
and throw objects of that class as exceptions.
Nitrogen participates in this tradition and
expands upon it.

One problem with the traditional approach has
been that one cannot catch specific error codes,
because the error codes differ only in value,
rather than in type. To alleviate this problem,
the Nitrogen Nucleus uses a template,
ErrorCode, to generate a distinct subclass of the
wrapper class for each error code. Thus, for
example, the class

ErrorCode< Nitrogen::OSStatus, fnfErr >

represents a Carbon file-not-found error, and is

a subclass of Nitrogen::OSStatus.

Nitrogen also provides a function template for
throwing these classes. The function

template < class ErrorClass >
void ThrowErrorCode(ErrorClass)

looks up the particular error code in a table and
throws the appropriate subclass of ErrorClass.
Unfortunately, it’s not practical for the Nucleus
to construct the table of error codes on its own,
but calling

RegisterErrorCode<ErrorClass, code>()

ensures the registration of a particular code in
the table. When passed an error code not
registered in this way, ThrowErrorCode throws
the base class.

It’s not enough to produce exceptions from error
codes. Sometimes it’s also necessary to produce
error codes from exceptions. Nitrogen uses a
token class, TheExceptionBeingHandled, to
represent the current exception and provides a
specialization of Converter to act on it. Using
these, one may write

Convert<DesiredType>
 (TheExceptionBeingHandled())

to produce an error code from the current
exception. The converter uses two strategies to
perform the conversion: first, it tries to catch
the exception as const DesiredType& and
return that value; if that fails, it uses a list of
types that can be converted to DesiredType by
the Convert function. If both strategies fail, it
rethrows the exception.

Like the exception throwing mechanism, the
exception conversion list can’t be constructed
by Nitrogen on its own. To ensure that a
particular conversion is listed, one may call

RegisterExceptionConversion
 < Output, Exception >()

For times when an error code is strictly
required, one may supply a default value for
the converter to return instead of rethrowing the
exception:

The Nitrogen Manifesto , page 3

Convert<DesiredType>
 (TheExceptionBeingHandled(),
 defaultValue)

The exception conversion mechanism is
encapsulated in a class, ExceptionConverter,
which can also be used for producing error
messages or in other situations where a global
translation scheme is inappropriate.

Ownership
Managing the disposal of resources is error-
prone in a C program, and correctly using C-
style resource disposal functions in an
exception-rich environment is nearly impossible.
So C++ programs instead use resource
management classes whose destructors release
resources. The exemplar of this technique is the
template std::auto_ptr, which manages the
disposal of resources with delete.

The Nitrogen Nucleus provides a similar
template, Owned, for managing the disposal of
resources through function calls. Specializations
of the templates OwnedDefaults and Disposer
specify the functions used to dispose resources
of various types, so that Nitrogen knows, for
example, that the destructor of an
Owned<WindowRef> should call
DisposeWindow.

As with auto_ptr, the copy constructor and
assignment operators of Owned transfer
ownership of the owned resource from one
object to another — the object copied or
assigned from is left holding nothing. This effect
may be used to make function signatures more
expressive: when Owned<T> is used as a
function parameter, it indicates a transfer of
ownership from the caller into the function; and
when used as a function result, it indicates a
transfer of ownership out of the function.

The static member function Owned<T>::Seize is
used to claim ownership of a freshly created
resource, and the member function Release is
used to release ownership without transferring
it to another object.

For situations where an object may not have a
single owner, or where the unusual copying and
assignment semantics of Owned are

unacceptable, the Nitrogen Nucleus also
provides a template Shared. Copying a Shared
object dilutes, rather than transfers ownership;
the destructor of the last Shared object referring
to a resource disposes of the resource. Shared
objects are created by transferring ownership
from an Owned object, and Shared provides a
member function Unshare which transfers
ownership back into an Owned object, on the
condition that the resource has only one owner.

Scoped Changes
In addition to the disposal of allocated
resources, C++ programs use destructors as an
exception-safe mechanism for reverting
variables to previously-saved values. The
Nitrogen Nucleus provides two templates,
Scoped and Tentative, which embody this
idiom. Each takes a reference-like type as its
template parameter, and is constructed from a
reference of that type.

Scoped is the simpler of the two templates.
Upon construction, a Scoped object stores a
copy of the variable to which it is given a
reference. During its lifetime, the Scoped object
acts as a reference to that variable —
assignment to the Scoped object causes
assignment to the variable, and reading from
the Scoped object produces the current value of
the variable. When the Scoped object is
destroyed, the original value is restored to the
variable.

The template Tentative similarly stores the
original value of a variable and acts as a
reference to that variable. But with a Tentative
object, the reversion to the original value can be
avoided. If the member function Commit is
called before destruction, the original value will
not be restored. Tentative thus allows a series
of changes to be grouped into a transaction; if
an exception prevents the program from
reaching the call to Commit, the changes will be
rolled back.

Many properties that may benefit from being
saved and restored are not stored in simple
variables; instead, one must call functions to get
and set their values. For this reason, the
template parameters of Scoped and Tentative
are not limited to simple references. They may
also be proxy types that behave like references.

The Nitrogen Manifesto , page 4

The Nitrogen Nucleus provides a template,
Pseudoreference, which produces such a proxy
type from a getter-setter function pair.

Destruction Exceptions
The problem of exceptions coming from
destructors is a particularly thorny one. Three
things are clear about the problem. First, errors
will happen in destructors, particularly when
legacy interfaces are involved. Second, it’s bad
to let these errors go unreported. And third, it’s
bad to have a program terminate because
exceptions collided during stack unwinding.

A palatable way to deal with this situation has
yet to be found. So, following age-old
programming tradition, the Nitrogen Nucleus
provides a flexible mechanism for choosing
between the unpalatable alternatives. Each
class may choose its own destruction exception
policy, or use a default policy chosen by macro
flags. If no flags are set, the default policy
passes the exceptions to a handler function,
and the default handler ignores them.

Wrappers for Integral Types
Legacy interfaces sometimes use integral types
to represent things which aren’t integers at all.
This practice not only compromises type-
safety, but creates problems in overload
resolution and template instantiation. The
Nitrogen Nucleus provides class wrappers for
integral types through the templates IDType,
SelectorType, and FlagType. Each of these
templates takes three parameters: a tag type,
an underlying integral type, and a default value.
The tag type serves only to distinguish an
instantiation of the template from other
instantiations with the same underlying type
and default value.

IDType is the simplest of these templates. It is
used for types, such as file reference numbers,
that are only produced by functions and have
no numeric properties other than ordering.
There are implicit conversions from IDTypes to
their underlying integral types and vice-versa,
but conversions to and from other integral types
or IDTypes are blocked. For situations in which
the implicit conversion is inadequate, IDType
provides a member function Get, which returns
the value as the underlying type, and a static
member function Make, which produces an

IDType object.

The template SelectorType is used for types
whose values are given by constants in header
files, but that have no numeric properties. In
addition to conversions to and from the
underlying type, there are implicit conversions
to (but not from) SelectorTypes from int,
unsigned int, long, or unsigned long, as
necessary to allow enumerators to be converted
to the SelectorType.

FlagTypes are similar to SelectorTypes, but also
allow bitwise operations and are convertible to
bool.

Cyanogen
Cyanogen is the set of rules by which the
Nitrogen interface relates to Carbon. The
fundamental goal of Cyanogen is to define
Nitrogen in a way which facilitates good C++
programming practices while following the
fundamental design of Carbon. Its secondary
goals are to make Nitrogen easy to expand,
easy to learn, and easy to use.

Namespaces
All Nitrogen functions are defined in the
Nitrogen namespace. Since many identifiers in
Nitrogen have the same names as identifiers in
Carbon, a using-directive “using namespace
Nitrogen” is rarely an adequate way to access
Nitrogen identifiers. The recommended practice
is to declare “namespace N = Nitrogen” and
write “N::” in front of Nitrogen identifiers.

Writing “N::” for operator functions is
awkward, and Koenig lookup won’t find
operators in the Nitrogen namespace unless one
of the parameters has a Nitrogen type. To make
its operators more readily available, Nitrogen
provides a namespace Nitrogen::Operators
containing using-declarations nominating all
nonmember operators defined in the Nitrogen
namespace. Any scope which needs these
operators can make them available with the
declaration “using Nitrogen::Operators.”

There is one way in which Nitrogen makes
excursions into the global namespace. Where
the Carbon headers define an identifier needed
by Nitrogen to be a macro, Nitrogen replaces
the macro with an equivalent C++ construct,

The Nitrogen Manifesto , page 5

such as a constant definition or inline function.
Preprocessor tests are used to ensure that these
redefinitions only occur if the macro is defined.

Types
Each type name used in Carbon should also
appear in the Nitrogen namespace. In most
cases, the Nitrogen name is simply a synonym
for the Carbon name, introduced with a using-
declaration. Carbon types are never redefined
by Nitrogen in order to add constructors or
ordinary member functions; these purposes can
be more compatibly achieved by writing
nonmember functions. Nitrogen also does not
redefine types in order to add destructors;
instead, the Owned template is used to
represent resource ownership and the
unadorned type is used to refer to resources
without claiming ownership.

Nitrogen does redefine types in order to
improve type-safety. In particular, where
Carbon uses a numeric type for nonnumeric
purposes, Nitrogen wraps this type in a class
type, usually using the IDType, SelectorType, or
FlagType template. Likewise, where Carbon
simulates inheritance by typedef-names for
void*, such as CFPropertyListRef or
CFTypeRef, Nitrogen provides wrapper types.
To the extent that it is practical, these types
provide all the conversions and operators
necessary for them to be interchangeable and
miscible with the Carbon type. And to cover
situations where the wrapper type does not fit
seamlessly, the wrapper provides a static
member function Make for creating instances of
the class from the Carbon type and a member
function Get that returns the object’s value in
the Carbon type.

Nitrogen introduces such a wrapper for a
numeric type whenever the Carbon usage
indicates a distinct type, even when Carbon
does not give that type a name. For these types,
Nitrogen uses the name that most closely
matches the names given by Carbon to
functions and variables related to the type. If
Carbon uses more than one variation on a
name, Nitrogen uses typedef declarations to
make all of the variations equivalent.

In general, Nitrogen does not introduce wrapper
classes in order to declare operator functions;

instead, it declares nonmember operator
functions. But the operators [], (), and -> may
only be declared as member functions. When
one of these operators is appropriate, Nitrogen
defines a wrapper type. But if the Carbon type
permits, Nitrogen arranges for templates such
as Owned to accept either the original Carbon
type or the wrapper class.

Nitrogen also introduces wrapper classes for
the Pascal string types Str255, Str31, and so
forth. These are all typedef names for
specializations of template class Str<length>.
This template to mimics the properties of the
array types, adding only copy-construction and
assignment operations.

Functions
While Nitrogen is conservative in redefining
types, it is liberal in redefining functions. Most
Carbon functions will have one or more
Nitrogen wrappers; only a few are brought into
the Nitrogen namespace with a simple using-
declaration. The majority of changes instituted
by the wrappers are simple changes to the error
reporting, return type, or parameter list of the
function. But in some cases — particularly
when a single Carbon function is burdened with
a great variety of responsibilities — the
wrapper functions can be considerably more
complex.

Exceptions
All Nitrogen functions report errors by throwing
exceptions.

Errors represented by OSStatus codes are
thrown as Nitrogen::OSStatus or as a class
derived therefrom. Nitrogen provides the
function ThrowOSStatus to simplify throwing
these exceptions: this function does nothing
when passed noErr; it throws an object of type
ErrorCode<Nitrogen::OSStatus, code> when
passed a registered error code; and it throws an
object of type Nitrogen::OSStatus otherwise.

Calling the function RegisterOSStatus<code>()
ensures that a particular error code is
registered. Before throwing an OSStatus
exception, Nitrogen wrappers for Carbon
functions ensure the registration of every error
code listed in the Inside Macintosh chapter
describing the Carbon function.

The Nitrogen Manifesto , page 6

In accordance with these rules, the Nitrogen
wrappers for MemError, ResError, and
QDError do not return values, but instead
throw exceptions. If a Carbon function reports
errors through one of these mechanisms, its
Nitrogen wrapper calls the error-throwing
function to ensure that the error is not ignored.

If a Carbon function indicates an error without
providing an error code, say by returning a null
pointer, Nitrogen declares a class
FunctionName_Failed, and the Nitrogen
wrapper for that function throws an object of
that type. Iteration functions such as
FrontWindow and GetNextWindow are not
considered to have failed when they return a
null pointer to indicate the end of the iteration.

Function Results
Nitrogen functions always return their results.

When a Carbon function has multiple results,
its Nitrogen wrapper returns a structure type
containing all of the results. The structure is
named FunctionName_Result; all of its data
members are public and each bears the name
given to the corresponding parameter in Inside
Macintosh. If one of the results is clearly
primary, as in ResolveAliasFile, the result
structure will have a conversion operator that
converts it to the primary result.

A few functions, such as SetPt or RectRgn, can
be viewed in two ways: either as an
assignment-like operation that modifies a
parameter, or as a construction-like operation
with a result. In these cases, Nitrogen provides
two overloaded wrapper functions, one
following each interpretation.

Some Carbon functions, such as
CFBundleGetDataPointerForName, return a
void* result which often needs to be cast to
some other type. Others, such as GetWRefCon,
return a long integer that is often simply a
substitute for void*. Nitrogen overloads these
functions with templates that perform the
appropriate casts.

Function Parameter Lists
A Nitrogen wrapper function takes its
parameters in the same order as its Carbon

counterpart, but may give some parameters
different types, give some default values, or
even omit some parameters entirely.

Trailing parameters are given default values
when the choice of default value is clear. But
this mechanism is not available for parameters
early in the list. Where no ambiguity arises,
Nitrogen therefore provides overloaded
wrapper functions that allow early parameters
with clear default values to be omitted.

Where pointers are passed as parameters to
Carbon functions, Nitrogen uses references if
possible. Pointers are used for parameters that
are arrays, and for parameters that may be null;
references are used in all other cases.

For Carbon types that have Nitrogen wrappers,
Nitrogen uses the Nitrogen wrapper type rather
than the Carbon type. But when such a type is
used in a non-const reference parameter,
Nitrogen overloads the function to accept either
type.

The use of integral types to represent fixed-
point numbers is a particularly heinous practice
of the Macintosh operating system, a practice
stemming from the poor floating-point
capabilities of a long-abandoned processor.
Nitrogen breaks with this practice: where a
Carbon function uses a fixed-point type, its
Nitrogen wrapper uses double.

Nitrogen also uses the C++ types bool, void*,
and std::size_t where Carbon uses other types
for similar purposes. In particular, Nitrogen
replaces long by void* in contexts where it is
used to hold a generic pointer.

Ownership
A Nitrogen function that creates a resource of
type T returns the created object in a result of
type Owned<T>; and a Nitrogen function
which consumes such a resource receives it in a
parameter of type Owned<T>. The Nitrogen
headers for such functions ensure that the
necessary specializations of OwnedDefaults
and Disposer are available.

For resources that are released by a function
that may fail, the specialization of Disposer
uses the default destruction exception policy to

The Nitrogen Manifesto , page 7

handle failures within the destructors of the
Owned objects. Since destruction exceptions
are problematic, one may take weight off of this
mechanism by making explicit release calls for
these resources whenever practical. Unlike the
destructors of the Owned objects, the releasing
functions always throw their errors.

Nitrogen takes a broad view of ownership.
Anything that can be closed, deleted, disposed,
freed, released, removed, or otherwise gotten
rid of is governed by this rule. For reference-
counted objects, this rule applies to each
counted reference.

Some resources, such as files, are usually
created with the intent that they live until some
external process disposes of them. The member
function Owned<T>::Release will set the
resource free in this fashion. Care should be
taken to delay this call until the resource is
ready to stand on its own — for example, one
generally should not release a file until its
contents have been written. In this way, one
may avoid leaving behind half-written files
when an exception is thrown.

Strings
The Macintosh C++ programmer is confronted
with five kinds of strings: Pascal-style strings
with a length byte, C-style null-terminated
strings, CFStrings, std::strings, and
std::wstrings. The general Nitrogen practice is
that wrappers for Carbon functions use the
same kind of string as the Carbon function. To
ease the burden of this practice, Nitrogen
provides conversions between most pairs of
string types.

Following Macintosh convention, function
parameters of type const char* are taken to be
C strings, and parameters of type const
unsigned char* are taken to be Pascal strings.
While many Carbon functions produce Pascal
strings, these cannot be function results, so
Nitrogen functions instead return Pascal strings
using the template Str. This template is not
used as a parameter type.

Where Carbon functions use a pointer and
length to refer to text, Nitrogen provides two
wrapper functions. One uses the pointer and
length, and the other uses either std::string or

std::wstring. The class std::string is used for
single-byte text, or for text where the character
size is governed by a Macintosh script code;
std::wstring is used for UTF-16 text.

Selectors
Some Carbon functions use selectors — integer
parameters that select from a variety of actions.
Nitrogen always provides simple wrappers for
these functions which follow this pattern. But
where the wrapper can be improved by
knowledge of the particular selector used,
Nitrogen overloads those simple wrappers with
function templates that take the selector as a
template parameter. In this way, the template
wrapper for GetControlData can provide a
result of the appropriate type and the template
version of Gestalt can provide default values
for some selectors.

Where selectors are used as template
parameters, Nitrogen provides a traits class
template, FunctionName_Traits, which
describes the variable portions of the function
template. If the result type varies, it declares a
type name Result, and for each parameter that
varies in type, it declares a type name
ParameterName_Type.
Callbacks
Nitrogen takes a multilayered approach to
Carbon functions that have callback
parameters, overloading the function name to
provide several degrees of convenience.

As a first layer, Nitrogen provides a function
that takes a universal procedure pointer as a
parameter and provides the usual Nitrogen
facilities. Using the first-layer wrapper for
InstallEventHandler, one might write

InstallEventHandler
 (eventTarget, myUPP,
 typeCount, eventTypes, userData)

As a second layer, Nitrogen provides a function
template that, rather than taking a UPP as a
function parameter, takes a function pointer of
the corresponding type as a template
parameter. From this function pointer, it
constructs a UPP of static lifetime using the
template StaticUPP. Using this wrapper, one
may write

The Nitrogen Manifesto , page 8

pascal OSStatus
Handler(EventHandlerCallRef,
 EventRef,
 void *);

InstallEventHandler< Handler >
 (eventTarget, typeCount,
 eventTypes, userData)

As a third layer, Nitrogen provides glue that
puts a Carbon-style face on a Nitrogen-style
function. The Cyanogen rules are applied to the
callback function type to derive a callback type
in the Nitrogen style — that is, one which
throws exceptions, returns its results, and so
forth. In addition, if there is a void* “user data”
parameter passed through to the callback, it is
moved to the front of the callback parameter
list, and it is allowed to be of any data pointer
or reference type.

The third layer of overloading is a function
template that takes the user data type and a
corresponding function pointer as template
parameters, and provides the necessary
Carbon-to-Nitrogen glue and UPP. Taking
advantage of this glue, one may write
void Handler(WindowRef,
 EventHandlerCallRef,
 EventRef);

InstallEventHandler<WindowRef,Handler>
 (eventTarget, typeCount,
 eventTypes, myWindow)

There may be cases in which overloading the
layer two wrapper with a layer three wrapper
would create an ambiguity; in such cases, the
layer three wrapper replaces the layer two
wrapper.

As a fourth layer, Nitrogen provides glue that
navigates weakly-typed mechanisms for
passing parameters and returning results.
Callbacks such as Carbon event and Apple
event handlers provide selectors to the
operating system in order to read their
parameters and return their results. The fourth-
layer Nitrogen wrapper for a function of this
kind is templated on these selectors, on any
user data type, and on the function pointer. It
uses these parameters to construct glue that
extracts parameters and returns results, in

addition to performing all the work done by the
layer three glue. It is this fourth-layer interface
that is used in this example:

Point IdealWindowSize
 (const MyContent&, WindowRef);

InstallWindowEventHandler
 < kEventClassWindow,
 kEventWindowGetIdealSize,
 kEventParamDimensions,
 const MyContent&,
 N::EventParamNameList
 <kEventParamDirectObject>,
 IdealWindowSize >
 (myWindow, myContent);

Proxies
To facilitate the use of the Scoped and
Tentative templates, Nitrogen provides a proxy
type for each getter-setter function pair in
Carbon. The copy constructors and assignment
operators of these types mimic the behavior of
references. The names of these proxies are
constructed by removing the word “Get” from
the name of the getter function.
Nitrogen also provides proxies for abstractions,
such as MenuItem and ControlPart, that are
implicit in the Carbon interface as function
parameter groups. The name of such a proxy is
a singular noun phrase derived by removing the
parts of the function names that describe their
action. Those functions are then overloaded to
accept either the original parameter group or the
proxy type.

Finally, where Carbon provides facilities for
accessing the elements of a collection, Nitrogen
provides a proxy that, to the extent made
possible by Carbon, acts as a reference to a
C++ container. The names for these container
proxies are plural noun phrases derived by
removing words such as “First” or “Next” from
the names of the functions used to access
elements. For this purpose, Cyanogen considers
“Infos” to be an acceptable plural of “Info.”

Conversions
Nitrogen rationalizes all the conversions in
Carbon under the Convert rubric. In particular,
Nitrogen aims to provide a full set of
conversions between string types, between
numeric types and string types, and between

The Nitrogen Manifesto , page 9

Core Foundation types and standard C++
types.

The conversions between Core Foundation
collections and C++ containers use the Convert
template recursively to convert elements, and
thus may be used to convert a wide variety of
types to and from CFPropertyLists.

Header Files
The organization of header files in Nitrogen
mirrors that of Carbon. If a Carbon identifier is
made available, directly or indirectly, by
including HeaderName.h, then both the Carbon
identifier and the corresponding Nitrogen
identifier are made available by including
Nitrogen/HeaderName.h. Each Nitrogen header
is guarded against multiple inclusion by a
macro NITROGEN_HEADERNAME_H.

A Call to Action
Nitrogen is a work in progress; most of it hasn’t
yet been written. And by its nature, it is
unlikely to ever be completed — like the
libraries that have come before it, Nitrogen will
always lag behind Apple’s development of
Carbon. But the design of Nitrogen is intended
to make these gaps easy to bridge, and to make
clear the direction Nitrogen will take across
these gaps. And I believe that these properties
make Nitrogen well-suited to an open-source
effort.

It is my hope that programmers who have
become accustomed to Nitrogen will find that
the easiest way to deal with these gaps is to
extend Nitrogen themselves, following the
Cyanogen rules. I intend to collect that work,
integrate it into the main Nitrogen code line,
and make it available to everyone.

As Nitrogen expands to embrace all of Carbon,
it will also expand to embrace a wider variety
of C++ idioms. And to make this expansion
possible, the Nitrogen Nucleus and the
Cyanogen rules will need to grow to meet new
challenges. I intend to make this growth a public
effort.

To these ends, I am assembling a network of
volunteers. Together, we will make the
Macintosh a better place for C++.

The Nitrogen Manifesto , page 10

