
Jonathan ‘Wolf’ Rentzsch
http://rentzsch.com

Skeptic’s Introduction to Objective-C:
Ten Things I Love About ObjC

and

Fifteen Things I Hate About ObjC

I’m an ObjC Skeptic.

I actively resisted learning ObjC

Platform limitations

Syntax

lack of Garbage Collection

Now I’m coding in ObjC

but only “where it makes sense”

That’s the Skeptic/Pragmatist: I use and recommend
ObjC, but I recognize its problems

Who am I? Why am I here?

I’m going to walk you through what I love and hate
about ObjC.

ObjC gets a bunch of stuff right.

However, I’m not an ObjC apologist.

When something sucks, I’m going to point it out.

But most of the time I’ll also explain why it had to
suck. (Hint: it’s usually C/C++ compatibility.)

Why are you here?

:-)
Love

ObjC is simply C plus a preprocessor and a small
runtime

Not much different from plain C, so the learning
curve is short.

Love 1: Lightweight

Since ObjC is just a fancier C, it’s very compatible
with C (and now C++) code bases.

Hint: when integrating with C++, you probably should
use my NSXException package for ObjC/C++
exception bridging.

New exception model (circa gcc 3.3/Panther) largely
cures this.

Love 2: Compatible

I’ve been waiting forever for real desktop object model

COM is lame, and SOM was apparently too heavy.

ObjC is here, and is actually being used.

Highly pragmatic runtime: Simple and fast.

Good metadata for introspection.

Does most everything you want.

(will readdress in Hate point)

Love 3: (Fairly Good)
Runtime Object Model

ObjC has real, fast, runtime message sending.

Coupled with language’s design, allows many uses of
multiple inheritance to go away.

Love 4: Message Sending

Allows addition of methods to another class

Even a class you don’t have source code for.

i.e. Add a “rot13” method to NSString.

Also allows overriding of existing methods.

Good for fixing bugs, and for tracing execution.

Not without suckage, will readdress in Hate section.

Love 5: Categories

Cool runtime magic.

Allows your class to take over and “pose” as another
class.

Deep hacking potential.

Love 6: Posing

Introspection allows easy binding of strings to object
methods and/or variables.

Latest Real Life™ Example:

ORU_R01_PIDPD1NTEPV1PV2ORCOBRNTEOBXN
TECTI.ORU_R01_PIDPD1NTEPV1PV2.0.PID.0.4.0.1

This fetches the patient’s first name from the insane
HL7 medical-industry standard format.

Love 7: Key Value Coding

Saves the traditional preprocessor dance:
#ifndef __ARMOR__
#define __ARMOR__
// code goes here
#endif

Why wasn’t this part of the C/C++ standard like ten years ago?

Love 8: #import

NSBundle makes it easy to load a class by name.

C++ makes this very hard for no good reason.

Love 9: -classNamed

ObjC has C’s preprocessor.

__FILE__, __LINE__ and __PRETTY_FUNCTION__
all are there.

Conditional compilation rocks.

Makes compile-time assertion generation control
possible.

Love 10: Preprocessor

:-(
Hate

Thing I hate most, both politically and technically.

Consistent point of argument:

Newbies usually are unsure, and learning ObjC on
their own time. The weird syntax is just an obstacle.

Complaining about it invokes NeXTie insecurity/
elitism, which turns off newbie even more so.

Might be worth the political costs...

but it’s barely any better!!

Hate 1: Syntax

Really two issues: keyed parameters and brace syntax.

Keyed parameters:

Definitely a “win”.

But ObjC doesn’t use them nearly effectively
enough:

should allow reordering of parameters

should allow per-parameter defaults

could win big over C++ here

Maybe make them optional (Python)

Hate 1: Syntax cont’d

Brace syntax:

Do you really believe:
[[[MyClass alloc] init:[foo bar]] autorelease]

is easier to read or write than, say:
MyClass.alloc.init(foo.bar).autorelase

I screwed up typing the first one, but not the second.

This isn’t Lisp — the brace syntax buys you nothing
in terms of language tricks.

Why? Language Grammar Integration

Hate 1: Syntax cont’d

ObjC does little for you.

Heavy use of coding idioms since:

the same code has to be repeated often

little language support for anything other than
message sending

ObjC guys think all this explicit coding is good. They
say “no magic”.

There’s a long road from the explicitness of ObjC to
Perl. Making the common case more convenient isn’t
going to kill you. Some syntactic sugar is good.

Hate 2: Lightweight

Why? The ObjC folks will tell you “no magic”

I disagree. It has more to do with:

ObjC being a simple superset of C.

A mediocre language being propped-up by a great
framework.

Hate 2: Lightweight cont’d

ObjC gets raw pointers from its C heritage.

Raw pointers are evil and must be stopped.

At least, we need thin wrappers over raw pointers.

Raw pointers preclude good garbage collection.

I had a real hard time justifying learning a new
language that lacks garbage collection. That’s coming
from a guy who knows manual memory management.

Why? C/C++ compatibility

Hate 3: Pointers

Modern ObjC separates object allocation & initialization

This is not wrong by itself. Indeed, this would be
wrong if you couldn’t.

It is wrong that all code everywhere must separately
call both +alloc and -init, in the right order.

Here, “no magic” == “more code” == “more bugs”.

Except for the dumb syntax, I think C++’s new/
placement new gets this right.

Why? No good reason (yes, I know about +new)

Hate 4: Alloc/Init Dance

Back on the “no magic” meme, an ObjC class has a
designated initializer: an initializer all other initializers
should call through.

But ObjC provides zero lingual support for this very
important indicator.

You’re left with optional, nonstandard comments and/
or heuristics indicating such an initializer.

Why? No good reason

Hate 5: Designated
Initializers

Reads like a wacko wrote it:
if(self = [super init]) {
 // initialization code here
}
return self;

[super init] is fine

Assigning to self is wacko.

Placing the assignment in the if() reads like a common
error. Better compilers (CodeWarrior) will actually
warn/error about this.

Hate 6: Initialization Idiom

You can do this instead (recommended):
self = [super init];
if(self) {
 // initialization code here
}
return self;

Why? Unlike C++, which an instance has only one “this”
pointer, ObjC instances have multiple, scoped “selves.”

Hate 6: Init Idiom cont’d

Can’t allocate ObjC objects on the stack (anymore).

Even when you could, the benefit wasn’t there since
there was no destructors or guarantee your -dealloc
would be called.

I like C++’s resource initialization is acquisition (RIIA)
idiom. Makes writing exception-safe software easier.
But it requires stack-based objects and destructors,
which are “magic”. Yeah, like compiler-generated stack
management is “magic”.

Why? No good reason. (ObjC++ wrappers can do this)

Hate 7: No Stack Objects

Surprisingly hard to get right.

You need to decide if your instance variable should be
handled like a reference (which can be shared) or a
value (which cannot). Most of the time you want value
semantics, but implementation efficiency often makes
folks choose reference semantics.

Your decision effects how you write your getters/
setters. Had to figure this out for myself, as I never
found any good explanation of it.

Why? Largely due to threading & reference counting.

Hate 8: Getter/Setters

Yes, this was also on the Love list.

Terribly useful, but inherently evil.

Like raw pointers, it must die...

...but replaced with something safer!

Java gets this very wrong. It desperately needs
conditional compilation.

Why? C/C++ compatibility

Hate 9: Preprocessor

Sending a message to nil does basically nothing.

Why? This greatly reduces the need for checking for null
all the time. Less code == less bugs, right? ;-)

But it also does a great job of hiding real bugs.

Accidently disconnected outlets in shipping apps are
legend.

Wouldn’t be so bad if it were easy to make messaging
nil scream. But it’s hard to do, and it screams all the
time since Cocoa messages nil as a matter of course.

Hate 10: Messaging nil

Can’t unload a class once it’s been loaded.

Eliminates a bunch of possible cool tricks.

Why? No good reason.

Hate 11: Class Unloading

Neither Categories nor Posing can add instance
variables to the target objects.

There are inefficient work-arounds. But come on, let’s
get a real metaobject protocol runtime going.

Categories are broken for overriding. Overriding a
method more than once leads to undefined behavior.

Why? C/C++ compatibility mostly

Hate 12: Overriding

Not a major gripe, but when you need it, it’s real
handy.

Why? Stems from C, but perhaps could piggyback on
C++ namespace support.

Hate 13: No Namespaces

not clear:
NSString *foo = @"foo";
id bar = foo;

better:
NSString *foo = @"foo";
id *bar = foo;

Here, the pointer assignment is more explicit.

Strange for a language that is otherwise explicit about
everything else.

Why? No idea. Maybe “code cleanliness”?

Hate 14: id should be id*

The entire “if you’re not 100% enthusiastic about
ObjC syntax then you’re stupid” gets real old, real fast

Why?

Insecurity.

Elitism.

Tired of always having to defend their language:

From other language users

And their own newbie ObjC users (like me!)

Hate 15: NeXTie Arrogance

:-/
Indifferent

Can’t really use a completely alternative framework
with ObjC.

I’d care if Cocoa wasn’t the best one publicly available.

I reserve the right to change my mind when Adobe
open sources their framework ;-)

Indifferent 1: Frameworks

Cocoa uses reference counting

I can handle manual memory management and I can
obviously handle automatic memory management

Cocoa’s is kinda-manual, kinda-auto.

This was a big stumbling block for me

Definitely would have been high on Hate list

Likened to car with auto transmission but w/ clutch

Then I learned how pervasive NSAutoreleasePool is

So docs suck, but retain/release is okay. !good && !bad

Indifferent 2: Memory

This isn’t going to go over well with this crowd ;-)

ObjC doesn’t offer as much type safety as, say, C++.

I’m a big fan of catching errors as early as possible.

Formal Protocols help enough that I really don’t care.
I’ve only made one type error in a few months of
Cocoa programming. And that was because I was
doing undocumented things :-)

My attitude may change once I pick up a type inferred
language like O’Caml.

Indifferent 3: Type Safety

