Skeptic’s Introduction to Objective-C:
Ten Things | Love About ObjC

and

Fifteen Things | Hate About ObjC

Jonathan ‘Wolf’ Rentzsch
http://rentzsch.com

Who am [? Why am | here?

® I’'m an ObjC Skeptic.
® | actively resisted learning ObjC
® Platform limitations
® Syntax
® lack of Garbage Collection
?® Now I'm coding in ObjC
® but only “where it makes sense”

® That’s the Skeptic/Pragmatist: | use and recommend
ObjC, but | recognize its problems

Why are you here!

® I'm going to walk you through what | love and hate
about ObjC.

® ObjC gets a bunch of stuff right.
® However, I'm not an ObjC apologist.
® When something sucks, I'm going to point it out.

® But most of the time I'll also explain why it had to
suck. (Hint: it’s usually C/C++ compatibility.)

Love I: Lightweight
® ObjC is simply C plus a preprocessor and a small
runtime

® Not much different from plain C, so the learning
curve is short.

Love 2: Compatible

® Since ODbjC is just a fancier C, it’'s very compatible
with C (and now C++) code bases.

° ° . .
- . - - - - - - - - - - —-—
YAV r— fr— - - YAV v '

’ ‘

—-— -_— W e W W - - -
1 LJI JUAauwuly J U
® ® ’
[]
~ = ~ o -~ AT
L \ud ' JC (L& s N LJ
®

® New exception model (circa gcc 3.3/Panther) largely
cures this.

Love 3: (Fairly Good)
Runtime Object Model

® I've been waiting forever for real desktop object model
® COM is lame, and SOM was apparently too heavy.

® ObjC is here, and is actually being used.

® Highly pragmatic runtime: Simple and fast.

® Good metadata for introspection.

® Does most everything you want.

? (will readdress in Hate point)

Love 4: Message Sending

® ObjC has real, fast, runtime message sending.

® Coupled with language’s design, allows many uses of
multiple inheritance to go away.

Love 5: Categories

® Allows addition of methods to another class
® Even a class you don’t have source code for.
® i.e.Add a“rotl3” method to NSString.
® Also allows overriding of existing methods.
® Good for fixing bugs, and for tracing execution.

® Not without suckage, will readdress in Hate section.

Love 6: Posing

® Cool runtime magic.

® Allows your class to take over and “pose” as another
class.

® Deep hacking potential.

Love 7: Key Value Coding

® Introspection allows easy binding of strings to object
methods and/or variables.

® Latest Real Life™ Example:

® ORU_RO|_PIDPDINTEPVIPV2ORCOBRNTEOBXN
TECTI.ORU RO|_PIDPDINTEPVIPV2.0.PID.0.4.0.1

® This fetches the patient’s first name from the insane
HL7 medical-industry standard format.

Love 8:#import

@ Saves the traditional preprocessor dance:
Hiftndef ARMOR_

ttdefine ARMOR
// code goes here
#endif

® Why wasn'’t this part of the C/C++ standard like ten years ago!?

Love 9: -classNamed

® NSBundle makes it easy to load a class by name.

® C++ makes this very hard for no good reason.

Love |0: Preprocessor
® ObjC has C’s preprocessor.

® FILE , LINE and PRETTY FUNCTION
all are there.

® Conditional compilation rocks.

® Makes compile-time assertion generation control
possible.

Hate |:Syntax

® Thing | hate most, both politically and technically.
® Consistent point of argument:

® Newbies usually are unsure, and learning ObjC on
their own time. The weird syntax is just an obstacle.

® Complaining about it invokes NeXTie insecurity/
elitism, which turns off newbie even more so.

® Might be worth the political costs...

?® but it’s barely any better!!

Hate |:Syntax contd

® Really two issues: keyed parameters and brace syntax.
® Keyed parameters:
® Definitely a “win”.

® But ObjC doesn’t use them nearly effectively
enough:

® should allow reordering of parameters
® should allow per-parameter defaults
® could win big over C++ here

® Maybe make them optional (Python)

Hate |:Syntax contd

® Brace syntax:

® Do you really believe:
[[[MyClass alloc] init:[foo bar]] autorelease]

® is easier to read or write than, say:
MyClass.alloc.init(foo.bar).autorelase

® | screwed up typing the first one, but not the second.

® This isn’t Lisp — the brace syntax buys you nothing
in terms of language tricks.

® Why? Language Grammar Integration

Hate 2: Lightweight
® ObjC does little for you.
® Heavy use of coding idioms since:

® the same code has to be repeated often

? little language support for anything other than
message sending

® ObjC guys think all this explicit coding is good. They
say ‘no magic’.

® There’s a long road from the explicitness of ObjC to
Perl. Making the common case more convenient isn’t
going to kill you. Some syntactic sugar is good.

Hate 2: Lightweight cont'd

® Why? The ObjC folks will tell you “no magic”
® | disagree. It has more to do with:
® ObjC being a simple superset of C.

® A mediocre language being propped-up by a great
framework.

Hate 3: Pointers

® ObjC gets raw pointers from its C heritage.

® Raw pointers are evil and must be stopped.

® At least, we need thin wrappers over raw pointers.
® Raw pointers preclude good garbage collection.

® | had a real hard time justifying learning a new
language that lacks garbage collection. That’s coming
from a guy who knows manual memory management.

® Why? C/C++ compatibility

Hate 4: Alloc/Init Dance

® Modern ObjC separates object allocation & initialization

® This is not wrong by itself. Indeed, this would be
wrong if you couldn’t.

® It Is wrong that all code everywhere must separately
call both +alloc and -init, in the right order.

® Here,"no magic” == "“more code” == “more bugs”.

® Except for the dumb syntax, | think C++’s new/
placement new gets this right.

® Why? No good reason (yes, | know about +new)

Hate 5: Designated
Initializers

® Back on the “no magic” meme, an ObjC class has a
designated initializer: an initializer all other initializers
should call through.

® But ObjC provides zero lingual support for this very
important indicator.

® You're left with optional, nonstandard comments and/
or heuristics indicating such an initializer.

® Why? No good reason

Hate 6: Initialization ldiom

® Reads like a wacko wrote it:

if(self = [super init]) {

/[initialization code here

J

return self;
® [super init] is fine
® Assigning to self is wacko.

® Placing the assignment in the if() reads like a common
error. Better compilers (CodeWarrior) will actually
warn/error about this.

Hate 6: Init ldiom cont’d

® You can do this instead (recommended):
self = [super init];

if(self) {

/] initialization code here

J

return self;

® Why? Unlike C++, which an instance has only one “this™
pointer, ObjC instances have multiple, scoped “selves.”

Hate /7: No Stack Objects

® Can’t allocate ObjC objects on the stack (anymore).

® Even when you could, the benefit wasn’t there since
there was no destructors or guarantee your -dealloc
would be called.

® | like C++’s resource initialization is acquisition (RIIA)
idiom. Makes writing exception-safe software easier.
But it requires stack-based objects and destructors,
which are “magic”. Yeah, like compiler-generated stack
management is “magic’.

2 Why? No good reason. (ObjC++ wrappers can do this)

Hate 8: Getter/Setters

® Surprisingly hard to get right.

® You need to decide if your instance variable should be
handled like a reference (which can be shared) or a
value (which cannot). Most of the time you want value
semantics, but implementation efficiency often makes
folks choose reference semantics.

® Your decision effects how you write your getters/
setters. Had to figure this out for myself, as | never
found any good explanation of it.

® Why? Largely due to threading & reference counting.

Hate 9: Preprocessor

® Yes, this was also on the Love list.
® Terribly useful, but inherently evil.
® Like raw pointers, it must die...
® ...but replaced with something safer!

® Java gets this very wrong. It desperately needs
conditional compilation.

® Why? C/C++ compatibility

Hate |0: Messaging nil

® Sending a message to nil does basically nothing.

® Why? This greatly reduces the need for checking for null
all the time. Less code == less bugs, right? ;-)

® But it also does a great job of hiding real bugs.

® Accidently disconnected outlets in shipping apps are
legend.

® Wouldn’t be so bad if it were easy to make messaging
nil scream. But it’s hard to do, and it screams all the
time since Cocoa messages nil as a matter of course.

Hate | |: Class Unloading

® Can’t unload a class once it’s been loaded.

® Eliminates a bunch of possible cool tricks.

® Why? No good reason.

Hate | 2: Overriding

® Neither Categories nor Posing can add instance
variables to the target objects.

® There are inefficient work-arounds. But come on, let’s
get a real metaobject protocol runtime going.

® Categories are broken for overriding. Overriding a
method more than once leads to undefined behavior.

® Why? C/C++ compatibility mostly

Hate |3: No Namespaces

® Not a major gripe, but when you need it, it’s real
handy.

® Why? Stems from C, but perhaps could piggyback on
C++ namespace support.

Hate 14: id should be id*

® not clear:
NSString *foo = @ "foo";
id bar = foo;

® better:
NSString *foo = @"foo";
id *bar = foo;

® Here, the pointer assignment is more explicit.

® Strange for a language that is otherwise explicit about
everything else.

® Why? No idea. Maybe “code cleanliness™?

Hate |5: NeXTie Arrogance

® The entire “if you're not 100% enthusiastic about
ObjC syntax then you're stupid” gets real old, real fast

® Why?
® Insecurity.
® Elitism.
® Tired of always having to defend their language:
® From other language users

® And their own newbie ODbjC users (like me!)

-/

Indifferent

Indifferent |: Frameworks

® Can’t really use a completely alternative framework
with ObjC.

® I'd care if Cocoa wasn'’t the best one publicly available.

® | reserve the right to change my mind when Adobe
open sources their framework ;-)

Indifferent 2: Memory

® Cocoa uses reference counting

® | can handle manual memory management and | can
obviously handle automatic memory management

® Cocoa’s is kinda-manual, kinda-auto.
® This was a big stumbling block for me
® Definitely would have been high on Hate list
® Likened to car with auto transmission but w/ clutch
® Then | learned how pervasive NSAutoreleasePool is

? So docs suck, but retain/release is okay. !sood && !'bad

Indifferent 3: Type Safety

® This isn’t going to go over well with this crowd ;-)
® ObjC doesn’t offer as much type safety as, say, C++.
® I'm a big fan of catching errors as early as possible.

® Formal Protocols help enough that | really don’t care.
I've only made one type error in a few months of
Cocoa programming.And that was because | was
doing undocumented things :-)

® My attitude may change once | pick up a type inferred
language like O’Caml.

