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“Dylan” is a portmanteau of DYnamic LANguage

Object Oriented: everything is an object, including 
numbers, classes, and functions

Safe: arguments and values type-checked, no buffer 
overruns, no implicit casting, no raw pointers

Efficient: can compile to code as efficient as C++, or 
better

Introduction

• Object Oriented: Unlike C++ or Java, all values are objects, including numbers, 
characters, booleans, types, classes and functions. You can pass these values around or 
inspect their attributes just like any other object. Every object has a class associated with 
it at runtime. In Dylan, objects have types, not variables.

• Safe: An error is signaled if some operation doesn’t apply to a given object, or if you 
attempt to access out-of-range elements of a collection like a vector or array. Errors can 
also be caught at compile time if you give the compiler enough information about your 
program in the form of type declarations and restrictions on dynamism.

• Efficient: If you provide enough static information in the form of type declarations and 
restrictions on dynamism, Dylan can be compiled as efficiently as C++, or better. It can 
also be compiled efficiently using implicit information and static analysis, including type-
inference.
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Created by Apple Computer in the early 1990’s, sold 
an early version called Apple Dylan TR (Technology 
Release) in 1995, then ended the project

CMU created Gwydion Dylan, now open sourced and 
maintained by Gwydion Dylan Maintainers

Harlequin, Inc. created Harlequin Dylan for Windows, 
now called Functional Developer and owned by 
Functional Objects

History

• Apple Computer: <http://www.apple.com/> (Unfortunately, Dylan resources are no 
longer available at the Apple site.)

• Gwydion Dylan: <http://www.gwydiondylan.org/>

• Functional Developer: <http://www.functionalobjects.com/>
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A Quick Look at 
Dylan

When I’m learning a new programming language the first thing I like to do is look at 
some code samples to get a feel for the language, to see how it looks.
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Quick Look: hello-world

define method hello-world ()
  format-out( "Hello, World!\n" );
end method;

⇒ Hello, World!

This is the seminal “hello, world” program. As you can see, it looks fairly similar to the 
same program in C/C++, or Pascal. Dylan’s overall syntax should not be surprising to 
anyone familiar with “Algol-style” languages. I mention this to contrast it with, for 
example, Lisp and Smalltalk, two popular dynamic languages.

• define method introduces a method definition. A method is a kind of function.

• format-out() is like C’s printf(), and writes a formatted string to an output stream. In 
this case, we’re printing a simple string with an end of line (indicated with “\n”), but no 
other formatting directives or arguments.

• In these slides I’ll use the arrow ⇒ to indicate the output or the results of the code.
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Quick Look: factorial
define method factorial ( i )
  if (i = 0)
    1
  else
    i * factorial( i - 1 )
  end if
end method;

This is an implementation of the factorial function. Perhaps the most striking feature 
here, when compared to C/C++ or Pascal, is that there are no explicit “return” 
statements. Dylan statements all evaluate to some value, and functions return the value 
of their last statement or expression.

• Here, if i is zero, factorial() returns 1, otherwise it returns the result of calling itself 
recursively.

• Type declarations are optional in Dylan. I’ve omitted them here to emphasize this fact. 
In fact, notice that there is no declaration of the function result. This means, of course, 
you could call this function with, say, a string instead of a number and it would signal an 
error when it attempts to call a math function on it that doesn’t support strings. Type 
declarations can restrict the values a function can be called with, and help the compiler 
generate more efficient code.

• Semicolons are optional before “end” (and in this example, “else”). Many Dylan 
programmers omit the semicolon to indicate when the value of a statement/expression 
is intended to be returned, and they include the semicolon to indicate that the value is 
unused.
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Quick Look: <point>
define class <point> (<object>)
  slot x = 0;
  slot y = 0;
end class;

let point = make( <point> );
point.x := 100;
point.y := 50.2;

This is a simple class definition. The name of the class is <point>. Note that the angle 
brackets < > are part of the name, not special syntax. Dylan allows a wide set of 
characters in identifiers and there are a number of naming conventions typically used. In 
this case, classes and types are named with < and >. I’ll cover the naming conventions in 
more detail later.

• In parenthesis following the class name is the list of superclasses. In this case, 
<point> inherits from <object>, the root class.

• Slots are like data members or structure fields in other languages. They define the 
state or values of instances of a class. The initial value of each slot can be specified in 
the class definition (unlike C++). Dylan has several ways to initialize slots, including 
evaluating arbitrary expressions each time an object is created. Here, we just specify the 
literal value zero for each slot.

• Below the class definition is a code excerpt that shows how you might create an 
instance and set its slots. let introduces a local variable and initializes it (in fact, for 
safety reasons you can’t introduce a local without providing an initial value). make() 
creates an instance of a given class; it’s like C++’s new, except that it’s a function 
(instead of an operator or a keyword) and can take other arguments to control the 
creation and initialization of the object.

• Dylan uses := for assignment and = for equality comparisons like Pascal and Algol (and 
unlike C/C++).
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Naming Conventions
Names: multiple-words

Types: <object>, <number>, <string>

Globals: *high-score*, *the-port*

Constants: $pi, $months-per-year

Predicates: odd?, subclass?, instance?

Mutative: sort!, reverse!

Dylan allows a wider set of characters in identifier names than many other languages, 
and this enables some handy naming conventions. These are only conventions, mind 
you. The compiler knows nothing about them and does not enforce them.

• Hyphen (or minus) is used to separate multiple words in an identifier, where you might 
use underscore in C/C++ or capital letters in Pascal. Note that this means you have to 
put spaces around hyphens (and other operators) so they don’t get interpreted as part of 
the operand names. “x - 1” is a subtraction operation, but “x-1” is an identifier.

• Types and classes are surrounded with “angle brackets” (less-than and greater-than).

• Global variables are surrounded with asterisks.

• Global constants begin with a dollar sign.

• Predicates are functions that return a boolean value.

• Mutative functions may destructively modify their input arguments. This naming 
convention isn’t used for all such functions, though. It’s generally only used to 
distinguish mutative functions when there are non-mutative (pure functional) versions 
available as well. Here, for example, there exist sort() and reverse() functions that copy 
the input data into a new collection of objects.
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The Big Pieces

Dylan’s big features, including program structure, OOP, dynamism, and language 
extension (macros).
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Libraries & 
Modules

Libraries and modules provide the large-scale organization of Dylan programs.
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Libraries

Dylan programs consist of one or libraries

Libraries are the unit of compilation and the 
boundaries of optimization

Libraries contain one or more modules

Libraries import modules from other libraries, and 
export modules for use by other libraries

11



Library hello-world
define library hello-world
  use dylan;
  use io;

  export hello-world;
end library;

An example of a library definition. The library is named “hello-world”. It imports (uses) 
all of the modules from the standard “dylan” library and an “io” library. It exports a 
module named “hello-world”.
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Modules are namespaces

Dylan code defines binding names in a module

Modules import names from other modules, and 
export names of bindings defined within

Bindings that aren’t exported aren’t visible outside 
the module—modules define “interfaces” and control 
access to bindings

Modules
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Module hello-world
define module hello-world
  use dylan;
  use format-out;

  export say-hello;
end module;

An example of a module definition. The module is named “hello-world”. It imports (uses) 
all the bindings from the standard “dylan” module from the “dylan” library, and from the 
“format-out” module of the “io” library. It exports a binding named “say-hello”.

• Library and module names are in separate namespaces, so they can have the same 
name, as in this example, where library “hello-world” has module “hello-world”. They are 
also in a separate namespace from the names within modules, so the hello-world 
module could have, say, a function named “hello-world”, although this example doesn’t.

• Libraries and modules are not runtime objects. They exist only at compile-time.

14



Importing
use dylan, import: all;
use streams, import: { <string-stream> };
use io, exclude: { flush, seek };

use url-utils, export: all;
use png-utils, export: { decode-png };

Library and module definition use clauses support several options to import all or only 
some of the modules/bindings. They can also re-export names that are imported.
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Renaming
use dylan, rename: { sort => sort-std };
use io, prefix: "io-";

Library and module definition use clauses support options to rename modules/bindings 
upon import. This can be used to resolve naming conflicts or to distinguish names from 
certain modules. rename: renames one or more names. prefix: adds a prefix string to 
every imported name.
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Module dylan-user

All program definitions are in some module

Libraries & Modules are definitions

To “bootstrap”, compiler defines module “dylan-user”, 
you define your library and its modules in dylan-user, 
then define your program in one of your library’s 
modules
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Complete hello-world
module: dylan-user

define library hello-world...
define module hello-world...

module: hello-world

define method say-hello ()
  format-out( "Hello, World!\n" );
end method;

Putting it all together to define a Dylan hello-world program.
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Inside dylan-user
define module dylan-user
  use dylan;
end module;

An illustration of what the definition of the “dylan-user” module might look like, were it 
explicitly defined in your code.
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Many Dylan libraries only contain one module, or 
perhaps just a few, each of which exports very 
different things

More robust libraries may export several modules 
that represent different “interfaces” on the same 
functionality, similar to C++’s public:, private:, and 
protected:, but with more flexibility

Interfaces
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Library plug-in
define library plug-in
  use dylan;

  export plug-in,
         plug-in-implementor;
end library;

Let’s say you want to define a library for supporting application plug-ins. You would 
define an interface for plug-ins. However, there may actually be several different 
interfaces for different needs, e.g.: One for plug-in implementors (”plug-in-
implementor”), one for plug-in clients (”plug-in”), and one for the library implementation 
(”plug-in-implementation”). Perhaps even another for debugging utilities. The 
implementation module would not be exported and would remain private.
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Module plug-in
define module plug-in
  use dylan;

  create <plug-in>,
         load-plug-in,
         plug-in-action,
         unload-plug-in;

  create plug-in-name;
end module;

Let’s say you want to define a library for supporting application plug-ins. You would 
define an interface for plug-ins. However, there may actually be several different 
interfaces for different needs, e.g.: One for plug-in implementors (”plug-in-
implementor”), one for plug-in clients (”plug-in”), and one for the library implementation 
(”plug-in-implementation”). The implementation module would not be exported and 
would remain private.

• The create clause creates and exports a binding without a definition. The 
implementation module will import these names and provide definitions. We do this to 
cleanly separate the two modules, so the “public” module doesn’t use the 
implementation module, but the other way around.
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plug-in-implementor
define module plug-in-implementor
  use dylan;

  create <simple-plug-in>,
         do-load-plug-in,
         do-plug-in-action,
         do-unload-plug-in;
end module;

The implementation module exports a <simple-plug-in> that plug-in writers can 
subclass. It’s different from the public interface class <plug-in>, which is probably 
abstract and has no implementation to inherit. <simple-plug-in> might inherit some 
default behavior from the library.
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plug-in-implementation
define module plug-in-implementation
  use dylan;

  use plug-in,
      plug-in-implementor;
end module;

The implementation module uses the public and implementor modules so it has access 
to all their interfaces and can provide definitions for them.
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Classes
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Classes

A class defines a type in the class hierarchy, and 
storage for object state, called “slots”

Every instance object has a class

Classes do not define “member functions” or a 
namespace (generic functions and modules fill those 
roles)
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Classes
Classes are types. There are also types that are not 
classes.

There is a root class “<object>”. It is the root of the 
class and type hierarchy.

Classes are objects; you can pass them around, test 
properties, etc.

Dynamic: You can create classes and subclasses at 
runtime
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Class <point>
define class <point> (<object>)
  slot x;
  slot y;
end class;

let point = make( <point> );
unless (slot-initialized?( point, x ))
  point.x := 0;
  point.y := 0;
end;

This is a simple class definition. We’ll grow it over the next few slides to point out slot 
definition options.

• No initial values are given for the slots, so they’re given an implementation-private 
“uninitialized” value. Any attempt to read that value will signal an error. You can check 
whether a slot is initialized with slot-initialized?().

• unless is like if, except it executes the enclosed code if the condition is false (also, it 
has no “else” or other clauses).

28



Init Expressions
define class <point> (<object>)
  slot x = 0;
  slot y = 0;
end class;

let point = make( <point> );
⇒ {<point>: x = 0, y = 0}

Here, we’ve added initialization expressions to initialize the slots. They’re only zeros 
here, but arbitrary expressions are supported. There are other options, too, like 
specifying a function to call to get the initial value.
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Init Keywords
define class <point> (<object>)
  slot x = 0, init-keyword: x:;
  slot y = 0, init-keyword: y:;
end class;

let point = make( <point>, y: 42 );
⇒ {<point>: x = 0, y = 42}

Slots can also be initialized via keyword arguments to make(). Keyword arguments are 
tagged arguments with a keyword (a <symbol>) and a corresponding value. These are 
optional, and are applied after handling the initialization expression, so y defaults to 
zero and then is changed to 42 by the y: arg to make().

• You can also indicate that a given init keyword argument is required by using 
required-init-keyword: instead, in which case make() will signal an error if the arg isn’t 
supplied.

• A keyword clause in a class definition can be used to provide further control over 
initial values, but I’ve omitted it for brevity.
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initialize()
define method initialize
    (point :: <point>, #key x-and-y)
  next-method();
  point.x := x-and-y;
  point.y := x-and-y;
end method;

let point = make( <point>, x-and-y: 42 );
⇒ {<point>: x = 42, y = 42}

Sometimes, you need to do something more complicated to initialize slots, for example 
if you want to initialize more than one slot from the same init keyword arg, or if you 
want to enforce some slot value interdependency. After make() allocates an instance and 
initializes it using any available initialization information (from the slot initialization 
spec, or via init keyword args), it calls the generic function initialize(), which you can 
add a method to for your own classes.

• next-method() is an implicit parameter to every method. Calling it calls the next 
applicable method—the method for a superclass, if any. You should always call next-
method() early to make sure superclasses perform any initialization they need to before 
you go mucking with the instance—unless you really know what you’re doing and need 
to do something before the inherited methods do their thing.
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Slot Inheritance
define class <point> (<object>)
  slot x = 0;
  slot y = 0;
  slot size = 1;
end class;

define class <thick-point> (<point>)
  inherited slot size = 10;
end class;

Classes inherit slots from their superclasses. Subclasses can change the initial value for 
an inherited slot with an “inherited slot specfication” that names the slot and provides an 
init value specification. This can also be used simply to assert that your class inherits 
such a slot, by declaring an inherited slot without an init specification.

• If a class makes use of multiple inheritance and it inherits a slot through more than 
one inheritance path, it only inherits the slot once. It’s like C++ “virtual” inheritance.
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Slot Types
define class <point> (<object>)
  slot x = 0;
  slot y :: <integer> = 0;
end class;

let point = make( <point> );
point.x = "some text";
⇒ {<point>: x = "some text", y = 0}

point.y = "some text";
⇒ {<type-error>}

As with other bindings in Dylan, you can optionally specify a type for a slot. This 
constrains the types of values that can be stored in the slot. If you attempt to set it to a 
value of a different type, an error will be signaled. The default type constraint is 
<object>, the root of the type hierarchy, which allows anything to be stored in the slot.
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Slot Allocation
instance slot x;
class slot instance-count = 0;
each-subclass slot quux;
virtual slot bar;

Slots can have one of several “allocation” values that determine where the storage for 
them is located.

• instance allocation is the default. Each instance has storage for the slot.

• class allocation slots are allocated one per class. They’re like global variables or C++ 
static class members, except that you access them with the slot accessor functions. 
They’re only guaranteed to be initialized by the time the first instance is created, by the 
way.

• each-subclass is like class allocation, except that, in addition to the class getting 
storage, each subclass of the class has its own storage for the slot.

• virtual allocation doesn’t allocate any storage for a slot. It defines generic functions for 
accessors, which you must define. This is used for slots whose values are computed, or 
are stored in other slots or global variables.
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Class Adjectives
define concrete class...
define abstract class...

define sealed class...
define open class...

define free class...
define primary class...

Class definitions can have “adjectives” that define certain class behaviors. They come in 
complementary pairs. You can only use one of each pair in a class definition.

• concrete classes can have direct instances.
• abstract classes cannot have direct instances. If the class can be used as an argument 
to make() to create an indirect instance (an instance of a subclass), then we say the class 
is “instantiable”, otherwise it is “uninstantiable”.

• sealed classes cannot be subclassed by other libraries or at runtime.
• open classes can be subclassed by other libraries or at runtime.

• free classes can inherit from any other class.
• primary classes can only inherit from one other primary class. This helps make 
diamond-shaped inheritance hierarchies more efficient by guaranteeing that slots 
inherited from multiple superclass paths are all at the same offset for all subclasses. 
Otherwise, it may incur some runtime overhead to find the location of a slot for 
particular class instances.

• The defaults are concrete, sealed, and free.
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Generic Functions
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Generic Functions
Generic Functions are polymorphic functions

The basis of polymorphism and implementation 
inheritance in Dylan

Contain one or more methods that provide an 
implementation for specific classes and types

Dynamic: Methods can be added/removed at runtime

Are not “owned” by classes
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GF Dispatch

When you call a generic function it dispatches the call 
to a specific method

The most-specific method for the argument types will 
be called

Multiple Dispatch: The types of all the required 
arguments are used for method dispatching; there is 
no distinguished “self” or “this” argument

38



double()
define generic double (o);

define method double (o :: <object>)
  pair( o, o )
end method;

define method double (n :: <number>)
  2 * n
end method;

define method double (s :: <string>)
  concatenate( s, s )
end method;

This is a simple generic function double(). For illustration purposes we’ve explicitly 
defined the generic in addition to its methods. Generic functions are also implicitly 
defined by method definitions, if no explicit definition is provided.

• If you call it with a number or a string, it’ll call one of the more specific methods, 
otherwise, for all other objects it’ll call the first method.
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capture?() (1 of 2)

define method capture?
    (a :: <boris>, b :: <moose>)
  #f
end method;

define method capture?
    (a :: <boris>, b :: <squirrel>)
  #f
end method;

capture?() takes two arguments. Generic functions dispatch off the types of all their 
arguments. There is no distinguished “self” or “this” argument. This function returns true 
if a can capture b.

40



capture?() (2 of 2)

define method capture?
    (a :: <moose>, b :: <boris>)
  #t
end method;

define method capture?
    (a :: <moose>, b :: <natasha>)
  #t
end method;
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Object-Oriented 
Programming
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OOP in Dylan
Modules:
• Interfaces
• Access Control

Generic Functions:
• Polymorphism
• Behaviors
• Algorithms

Classes:
• Inheritance
• Types
• Attributes

• Modules define interfaces and access control.

• Classes define types, attributes, and inheritance.

• Generic Functions define polymorphic behaviors and algorithms.

In contrast, C++ class definitions provide a type and data members, a namespace, three 
kinds access control (public, private, protected), and member functions (which can be 
either virtual or non-virtual). Dylan takes a simpler approach with a few orthogonal 
pieces that can be used in combination with greater flexibility and generality.
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Types
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Types
A type is a set of one or more values

Classes are types

There is a root class “<object>”. It is the root of the 
class and type hierarchy.

Types are objects; you can pass them around, test 
properties, etc.

Dynamic: You can create types at runtime
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Singletons

A singleton is a type with only one value; it is used to 
indicate a single object

Singleton types can be created with the singleton() 
function

It is not the singleton pattern, where instantiating a 
singleton class always returns the one object
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singleton()
define constant <just-42> = singleton(42);
instance?( 42, <just-42> );
⇒ #t
instance?( 0, <just-42> );
⇒ #f

singleton() is a function that creates a type. It takes a single argument and returns a 
type whose only value is that one object.
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==
define method fact (n == 0)
  1
end method;

define method fact (n :: <integer>)
  n * fact( n - 1 )
end method;

fact(0); // calls the first method
⇒ 1
fact(3); // calls the second method
⇒ 6

There’s a convenient syntax for specializing a method on a singleton “==”. type == 
value is equivalent to writing type :: singleton(value).
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Union Types

A union type is a type whose values include all the 
values of two or more other types

Union types can be created with the type-union() 
function

Particularly useful for allowing values of disparate 
types without subclassing, e.g., “an rgb color, or a 
color table index, or a crayon color name string”
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type-union()
define constant <speed> =
  type-union(<integer>, <symbol>);

define variable *speed* :: <speed> = 0;
*speed* := 93;
*speed* := #"fast";
*speed* := #"medium";
*speed* := #t;
⇒ {<type-error>}

type-union() creates a type whose values are the values of every argument type. In this 
example, we define a type that’s the union of <integer> and <symbol>, allowing us to 
specify the “speed” of things using either a number or a descriptive symbol. Setting to a 
value that is not one of those types signals an error.
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false-or()
define method false-or (type :: <type>)
  type-union( singleton( #f ), type )
end method;

let x :: false-or(<string>) = #f;

if (x)
  x
else
  x := "some text"
end if;

false-or() is a common function used to define a type that includes #f and the values of 
some other type or types. It makes use of both singleton() and type-union(). It’s 
convenient to use this to indicate a binding that can hold, say, a string or “no string” 
(represented by false).
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Limited Types
A limited type is a type whose values are restricted 
to some subset of another type

Limited types can be created with the limited() 
function

Limited integers can be used to represent subranges 
of integers

Limited collections can be restricted in the types of 
objects they can contain, and they can be length 
limited
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limited(<integer>)
define constant <movie-rating> =
  limited( <integer>, from: 1, to: 10 );

let rating :: <movie-rating> = 10;

if (has-car-chases?( movie ))
  rating := rating + 1;
end if;
⇒ {<type-error>}

limited(<integer>) creates a type whose values are a limited subset of integers. Besides 
increasing type-safety and preventing out-of-range values, this allows Dylan to pick the 
right implementation of integer to match the required range of values, rather than 
requiring you to specify a particular integer size.
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limited(<collection>)
define constant <integer-vec> =
  limited( <vector>, of: <integer> );

let ratings = make( <integer-vec> );

ratings[0] := 10;
ratings[1] := 5;
ratings[2] := "A laugh riot!";
⇒ {<type-error>}

limited(<collection>) creates a collection type whose elements are restricted to a given 
type, and/or whose length is limited (using the optional size: argument). In this 
example, we define a limited <vector> whose elements are integers. Besides being more 
type-safe, this potentially increases performance and reduces memory overhead for 
storing the integers in the vector, since it needn’t check types when reading the vector, 
and it needn’t store type information for every element.
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Sealing
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Sealing

Places limits on dynamism, both at runtime and 
compile time

Reduces or eliminates runtime dispatch, type-
checking, and other overhead

You can seal domains, generic functions, methods, 
classes, and slots

Libraries are the boundaries of sealing
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Sealing Declarations
define sealed domain
      capture?(<agent>, <hero>);

define sealed generic foo (x, y);

define sealed method foo
          (<moose>, <squirrel>) ...

define sealed class <boris> (<agent>) ...

define class <natasha> (<agent>)
  sealed slot s;
end class;

This shows how to declare sealed domains, generics, methods, classes, and slots. 
Sealing disallows specific kinds of runtime dynamism and specific kinds of compile-time 
definitions across libraries.

• Sealed domains disallow adding more-specific methods or adding subclasses of the 
argument types outside the defining library or at runtime.

• Sealed generic functions define a generic function and a sealed domain for the entire 
generic function.

• Sealed methods define a method and a sealed domain for their argument types.

• Sealed classes can’t have subclasses added outside the defining library or at runtime.

• Sealed slots define sealed accessor methods (which define sealed domains).
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Conditions & 
Exceptions

Dylan has a very powerful system for handling errors (exceptions) and other conditions.

[SLIDES NOT YET WRITTEN]
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Macros

Dylan supports language extension via hygienic macros that operate on parser tokens 
rather than raw text like preprocessor macros.

[SLIDES NOT YET WRITTEN]
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Details, Details

The details of Dylan syntax and basic semantics.
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Dylan Basics

The fundamentals of Dylan syntax and semantics.
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Naming Conventions
Names: multiple-words

Types: <object>, <number>, <string>

Globals: *high-score*, *the-port*

Constants: $pi, $months-per-year

Predicates: odd?, subclass?, instance?

Mutative: sort!, reverse!

Dylan allows a wider set of characters in identifier names than many other languages, 
and this enables some handy naming conventions. These are only conventions, mind 
you. The compiler knows nothing about them and does not enforce them.

• Hyphen (or minus) is used to separate multiple words in an identifier, where you might 
use underscore in C/C++ or capital letters in Pascal. Note that this means you have to 
put spaces around hyphens (and other operators) so they don’t get interpreted as part of 
the operand names. “x - 1” is a subtraction operation, but “x-1” is an identifier.

• Types and classes are surrounded with “angle brackets” (less-than and greater-than).

• Global variables are surrounded with asterisks.

• Global constants begin with a dollar sign.

• Predicates are functions that return a boolean value.

• Mutative functions may destructively modify their input arguments. This naming 
convention isn’t used for all such functions, though. It’s generally only used to 
distinguish mutative functions when there are non-mutative (pure functional) versions 
available as well. Here, for example, there exist sort() and reverse() functions that copy 
the input data into a new collection of objects.
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Literal Constants
Number: 123, -1.5e3, #x1fde, #b110, #o777

Character: 'A', '\n', '\\', '\''

String: "text", "two\nlines", "\<44>"

Symbol: foo:, bar:, #"red", #"black"

Boolean: #t, #f

Pair: #(1 . 2)

List: #(1, 2, 3)

Vector: #[1, 2, 3]
• Numbers can be positive or negative, integers or floating point. Floating point numbers 
can use exponential notation. Integers can be given in hexadecimal (#x), binary (#b), or 
octal (#o).
• Like C, characters and strings can contain special characters indicated with backslash, 
like ‘\n’ (newline). They can also contain hexadecimal Unicode character values, e.g., 
“\<44>\<79>\<6c>\<61>\<6e>” = “Dylan”. Backslash can be used to escape 
backslash and single and double quotes.
• Symbols are unique strings. They are case-insensitive. There are two literal syntaxes 
for them, keyword: and #"unique string". foo: and #"foo" specify the same symbol 
value. keyword: syntax is useful for places where you have a keyword: followed by a 
value associated with the keyword. #"unique string" syntax allows more characters, 
such as spaces and colons.
• #t is true, and #f is false. We often pronounce them as just “tee” and “eff”.

Dylan has a rich set of collection classes—objects that contain other objects. These 
literals can only contain other literal constants, not arbitrary expressions or function 
calls.

• A pair is a collection with two values, head and tail. Some people might call it a “two-
tuple”. It’s like a Lisp cons cell, and can be used on its own or to construct lists or other 
linked data structures.
• A list is a linked-list.
• A vector is a one-dimensional array.
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Operators
Negation: - ~

Math: ^ * / + -

Equality: = ~=

Identity: == ~==

Comparison: < > <= >=

Logical: & |

Assignment: :=

This list is roughly in order of highest precedence to lowest.

• Unary Negation: - arithmetic negation (changes the sign of a number), ~ logical 
negation (changes true to false and false to true)

• Math: ^ power, * multiplication, / division, + addition, - subtraction

• Equality: = equal, ~= not equal; note that Dylan uses = for equality like Pascal, and 
unlike C/C++

• Identity: == two objects are the same object, ~== not the same object

• Comparison: < less than, > greater than, <= less than or equal, >= greater than or 
equal

• Logical: & logical and, | logical or; these only evaluate the right-hand side if the left-
hand side is true or false, respectively, and return the value of the last expression 
evaluated

• Assignment: := is used for assignment, as in Pascal
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Operator Functions
Infix Operator Function Call

1 + 2 \+( 1, 2 )

2 * 3 \*( 2, 3 )

4 - 2 \-( 4, 2 )

-x negative( x )

x = 42 \=( x, 42 )

Unary and binary infix operators are implemented using functions. You can refer to these 
functions by escaping the operator name with backslash. This allows you to call the 
function using function call syntax, or to pass the function around as any other function 
object.

Note that some operators are implemented in terms of others. For example, \~= is 
implemented by calling \= and  inverting the result, and the magnitude comparison 
functions, like \>=, are implemented using \< and \=.
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Element Reference
Element Reference Function Call

sequence[i] element( sequence, i )

array[i, j, ...] aref( array, i, j, ... )

all-windows[0] element( all-windows, 0 )

tic-tac-toe[1, 2] aref( tic-tac-toe, 1, 2 )

Looking up elements of sequences and arrays, which are types of collections, is 
accomplished by calling element() for sequences and aref() for multidimensional arrays. 
The shorthand syntax sequence[i] and array[i,j,k] provide a convenient notation for 
calling these functions.

Calling the functions directly may provide access to additional function arguments, and 
you can implement these functions for collection classes you define. This means you can 
use the shorthand syntax for your classes just like the built-in ones.
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Slot Reference
Slot Reference Function Call

argument.function function( argument )

window.position position( window )

window.view.origin origin( view( window ) )

view( window ).origin "

origin( window.view ) "

Dylan provides a shorthand syntax for calling functions that accept one argument. 
argument.function applies function to argument, just as if you had written function( 
argument ). This is commonly used to access object slots.

Slots are accessed using accessor functions, so you can write slotname( object ) to get 
the value of the slot slotname for a given instance object. You can also use this 
shorthand syntax object.slotname, much as in C/C++ and Pascal. It is important to note 
that these are merely different syntax for the same thing—calling a function—quite 
unlike C/C++ and Pascal, where members/fields are accessed directly with the “dot” 
notation.

This is quite powerful. All access to objects is uniformly via functions, and it’s really just 
a matter of documentation or emphasis as to which ones are “slots” and which are not. 
The difference is less important to client code than it is in some other languages. This 
provides a level of encapsulation that makes it easier to change the implementation of a 
“slot” from simple access to something more complicated like lazy evaluation using an 
expensive computation, or performing other side effects.

You can also cascade slot reference syntax or even use either syntax in the same 
expression, as in the last three examples, all of which result in the same series of 
function calls.

There is one difference between these variations: The order of evaluation of the 
argument and function values is left-to-right according to the order in which they are 
written, not the order of the resulting function call.
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Assignment

Variables
volume := 11;
*total* := *total* + 1;

Functions
foo[i] := sqrt( x );
window.height := 42;
height( window ) := 42;

The assignment operator := is used to set variables to new values, and as an alternative 
to calling setter accessor functions, including element-setter() and aref-setter() to set 
elements in sequences and arrays.
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Assignment (-setter)

Slot Reference
window.height := 42;
height( window ) := 42;
height-setter( 42, window );

Element 
Reference

foo[1] := 10;
element( foo, 1 ) := 10;
element-setter( 10, foo, 1);

Array Element 
Reference

bar[1, 2] := 11;
aref( bar, 1, 2 ) := 11;
aref-setter( 11, bar, 1, 2 );

The assignment operator takes function names on the left-hand side and appends the 
suffix “-setter” to get the corresponding setter function, then calls it. It looks up the 
setter function name in the current lexical context (ie., the function names, including 
element-setter and aref-setter can be shadowed by local variables or imported from 
some other library, just like any other function).

In each of the groups above, each expression is equivalent (except for evaluation order 
of operands).
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Multiple Values
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Multiple Values

Functions can return multiple values, just like they 
can accept multiple arguments

Eliminates the need for “output” parameters

There is no “wrapper” object for the values; for 
example, on PowerPC, function arguments are stored 
in r3, r4, r5, etc. Multiple values could be returned in 
r3, r4, r5, etc.
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values()
values( 1, 2, 3 );
⇒ 1

2
3

define method square-and-sum (x, y)
  values( x ^ 2, x + y )
end method;

square-and-sum( 2, 3 )
⇒ 4

5
You can return multiple values by calling the values() function, which takes its 
arguments and returns them as multiple values.
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Binding Values (1 of 2)

let (a, b, c) = values( 1, 2, 3 );
a ⇒ 1
b ⇒ 2
c ⇒ 3

define variable (*whole*, *remainder*) =
        truncate( 1.98 );
*whole* ⇒ 1
*remainder* ⇒ 0.98

You can bind (assign) multiple values to local variables with let or to module constants 
and variables with define constant and define variable by using parenthesis.

73



Binding Values (2 of 2)

let (a, #rest r) = values( 1, 2, 3 );
a ⇒ 1
r ⇒ #(2, 3)

let (a, b, c) = values( 1, 2 );
a ⇒ 1
b ⇒ 2
c ⇒ #f

• As in function signatures, #rest can be used to bind a list of any remaining values.

• If there are more bindings than values, then any remaining bindings are assigned #f.
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Functions

Dylan functions can have required arguments, #rest arguments, and keyword arguments 
with optional default values. They can return required and optional values. Methods must 
be congruent with their generic functions.

[SLIDES NOT YET WRITTEN]
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Statements

An overview of the built-in statements.
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Statements Overview
Statements evaluate to a value and can be used 
anywhere an expression can, e.g.:

let x = if (foo) 42 else 0 end;

Conditional statements treat any value other than #f 
as “true”. Notably, zero and ‘\0’ are not #f:

if (0) #"foo" else #"bar" end;
⇒ #"foo"
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Statements Syntax
Statements optionally end with the “begin word”, e.g.:

if…end if;
for…end for;
case…end case;

Semicolons are optional before statement ends:

if (x) y; end;
if (x) y end;

In Pascal, semicolons are statement separators, and you can’t have one before an end. In 
C, semicolons are statement terminators, and you must have one after every statement. 
In Dylan, semicolons are optional before an end. A common idiom is to omit the 
semicolon to indicate that the value is being returned. In this idiom, a trailing semicolon 
indicates that the value is not returned or not used by the caller.
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if
if (camel.humps = 1)
  "dromedary"
elseif (camel.humps = 2)
  "bactrian"
else
  "not a camel"
end if;

Dylan has a typical if statement. elseif is used to chain multiple tests without increasing 
nesting. The elseif and else clauses are optional, of course. If a test succeeds, the if 
statement returns the value of the matching “then” code, otherwise it evaluates to #f 
(false).
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unless
unless (danger?( will-robinson ))
  follow( dr-smith )
end unless;

To complement if, Dylan has unless. It is equivalent to “if (~test) foo end”. It has no else 
clause. If the test evaluates to true (and “foo” isn’t executed), unless returns #f.
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case
case
  camel.humps = 1 => "dromedary";
  camel.humps = 2 => "bactrian";
  otherwise       => "not a camel";
end case;

Case is like if…elseif…elseif…else…end; It evaluates each test in order and if a test 
evaluates to true, it executes the right-hand side of the arrow (”=>”) and returns its 
value. An optional otherwise clause will match if no other test does. If there is no match, 
it returns #f.

• Unlike C, no explicit “break” is needed to end a right-hand side, and unlike Pascal, no 
explicit “begin/end” are needed. You can safely add as many expressions and statements 
as you like on the right-hand side.
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select
select (camel.humps)
  3, 4, 5   => "mutant camel";
  1         => "dromedary";
  2         => "bactrian";
  otherwise => "not a camel";
end select;

select compares a value against a series of values, in order, and executes the right-hand 
side of the arrow if there’s a match. More than one test value can be given on the left-
hand side of each arrow. Like case, it has an optional otherwise clause. Notably, if there 
is no match (and no otherwise), an error is signaled.
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select (by)
select (my-object by instance?)
  <window>, <view>   => "UI object";
  <number>, <string> => "computational";
  otherwise          => "unknown";
end select;

By default, the select comparison is performed with “\==”. A different test function can 
be specified with by.
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while
while (more-data?( stream ))
  read-and-process-data( stream )
end while;

while is an iteration statement. It loops as long as the test evaluates to true. while 
always returns #f.
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until
until (end-of-file?( file ))
  read-and-process-data( file )
end while;

until is like while except that it loops as long as the test evaluates to false. Note that 
until evaluates the test first, just like while. Neither performs the test after the loop 
body like C's “do { } while ()”.
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for
for (tree in forest)
  look-at( tree )
end for;

for (i from 1 to 10) ...
for (j from 0 below 10,
     k from 10 above 0 by -1) ...

for (thing = first-thing then next(thing),
     until: done?(thing)) ...

Dylan's for loop is quite versatile. It supports three different kinds of iteration and an 
explicit termination test, and multiple iterations can be performed in parallel (the loop 
exits when any of the iterations ends or the explicit test matches).

• Collection iteration clause: in iterates over every element in a collection.

• Numeric iteration clause: from iterates by integral values. to is inclusive, below and 
above are exclusive (the iteration stops before reaching the bounding value). by 
optionally specifies how much to change the value each iteration; 1 is the default.

• Explicit Step iteration clause: = assigns an initial value and then is evaluated each time 
through the loop to determine the next value.

• Termination clauses: One of until: or while: can be given to supply an explicit 
termination test expression.

Taken together, an explicit step iteration and while: termination clause are like C/C++’s 
three for loop clauses.

86



for (finally)
for (tree in forest,
     count = 0 then count + 1,
     while: have-film?( camera ))
  photograph( tree );
finally
  print( photos );
  count
end for;

The for loop has an optional finally clause that can be used to perform some action after 
looping or to calculate a value for the statement to return. Iteration variables (except for 
collection iteration variables, since they may be invalid at the end of the loop) are 
available in the finally clause. If there is no finally, for returns #f.
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begin
begin
  do-stuff();
  more-stuff();
end;

Begin simply evaluates the expressions in order. It returns the result of the last 
expression. If there are no expressions, it returns #f.
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block
block (return)
  open-files();
  if (files-empty?())
    return( #f );
  end;
  process-files();
afterwards
  report-totals();
cleanup
  close-files();
end block;

Block supports exception handling and non-local exits via an exit function. You can 
optionally supply a name in the parenthesis, and block will create a local variable with 
that name and bind it to a function that exits the block. "return" is just an example 
name, it isn't special like "return" in C. If any values are passed to the exit function, 
block returns them as its result. The exit function can be called anywhere in the block 
body, or even passed to other functions, which may call it to perform a non-local exit 
(exits any intervening functions on the stack, then exits the block—it's similar to C's 
setjmp()/longjmp()).

• The optional afterwards clause is executed after producing the value for the 
statement; this allows you to avoid having to create a local variable just to hold the value 
until the end of the block body.

• The optional cleanup clause is always executed whether or not an exception occurs or 
the exit function is called.

• If an exception occurs, the optional exception clauses are tested in order for one that 
can handle the exception and executes the first handler that can (if any).
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block (exception)
block ()
  let result = do-stuff();
  if (result ~= $no-error)
    error( "Something's wrong!" );
  end;
  do-more-stuff();
exception (e :: <file-error>)
  print( e.file-name )
exception (<error>)
  beep()
end block;

Some example exception clauses. error() signals an <error>. Exception clauses support 
other options, as well.
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method
method (x)
  x + 1
end method;

Method defines an anonymous function. It’s like “lambda” in Lisp or Scheme (and several 
other languages), and boost::lambda in C++.
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Local Declarations
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let
let x = 0;
let sym :: <symbol> = #"green";

let (whole, rem) = truncate( amount );

let (whole :: <integer>, rem :: <real>) =
      truncate( amount );

let (x, #rest rest) = values(1, 2, 3);
x ⇒ 1
rest ⇒ #(2, 3)

let defines a local variable and initializes it.

• An initial value is required—no variables may be left uninitialized.

• Local variables can be specialized—you can declare a type for them. Any attempt to 
assign a value of a different type will signal an error.

• let also supports multiple values. You can define a list of variables and assign a 
multiple-value value to them. You can also supply #rest to get a list of any remaining 
values. If there are more bindings than values, any remaining bindings are initialized to 
#f.
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local
local method square (x)
        x * x
      end method;
let y = square( 12 );
⇒ 144

local method back ()
        forth()
      end,
      method forth ()
        back()
      end;

local defines one or more local methods.

• Multiple methods defined in the same local declaration are defined simultaneously and 
can be mutually-recursive.

• The word method is optional.
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let handler
let handler <warning> =
      method (warning, next-handler)
        beep()
      end method;

let handler establishes a condition handler that remains in effect until the end of scope. 
Exceptions are a particular kind of <condition>. let handler allows you to define a 
handler for any condition, not just errors. For example, you can use this to establish a 
<restart> handler to recover from errors.
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Standard Classes

Classes defined in the standard Dylan library.

[SLIDES NOT YET WRITTEN]
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Types & Classes

[SLIDES NOT YET WRITTEN]
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Simple Objects

Characters, symbols, and booleans.

[SLIDES NOT YET WRITTEN]
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Numbers

[SLIDES NOT YET WRITTEN]
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Collections

The standard Dylan library includes a rich set of collection classes, including vectors, 
arrays, lists, hash tables, and strings.

[SLIDES NOT YET WRITTEN]
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Functions

[SLIDES NOT YET WRITTEN]
101



Conditions

[SLIDES NOT YET WRITTEN]
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More Information

Sources for more information about Dylan, implementations, libraries, and projects 
created with Dylan.
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Implementations

Gwydion Dylan, Gwydion Dylan Maintainers

http://www.gwydiondylan.org/

Functional Developer, Functional Objects, Inc.

http://www.functionalobjects.com/

Apple Dylan TR, Apple Computer, Inc.

• Gwydion Dylan is an open-source, portable implementation of Dylan for Mac OS X, 
Linux, and others. It consists of a command-line compiler, d2c, which generates C code, 
then compiles that, and the Mindy interpreter, and incomplete implementation used for 
bootstrapping d2c and interactive Dylan exploration.

• Functional Developer (aka “FunDev”) is a commercial implementation for Windows (95/
NT/2000/XP) with a graphical IDE including an interactive listener and debugger. It is 
currently being ported to Linux and is in alpha testing (as of September, 2003). It was 
originally developed by Harlequin. I worked on the IDE at Harlequin for two years, 
programming entirely in Dylan.

• The Apple Dylan Technology Release may still be found if you look for it, although 
Apple no longer sells it, and I have found no online archive of it. There are screenshots 
and descriptions of it available online.
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Projects

The Monday Project: Libraries and tools for 
compiling, markup languages and text processing, in 
Dylan using XML-based literate programming 

http://monday.sourceforge.net/

Dylan Code Collection: Miscellaneous open-source 
Dylan libraries

http://dylanlibs.sourceforge.net/

• The Monday Project is an impressive example of Literate Programming at work, as well 
as a source for open-source Dylan libraries and tools.

• Dylan Code Collection includes useful examples like simple HTTP and SMTP servers.
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Documentation

The Dylan Reference Manual

http://www.gwydiondylan.org/drm/

Dylan Programming: An Object Oriented and Dynamic 
Language

http://www.gwydiondylan.org/books/dpg/
db_1.html

• The Dylan Reference Manual (aka “The DRM”) is the the official source for the language 
definition and the definition of the core “dylan” library. Some parts are dense, but a lot of 
it is quite readable—if you like reading language reference manuals, like I do. It is 
available online in HTML and PDF formats, as well as in print.

• Dylan Programming is an excellent tutorial that serves as an introduction to Dylan and 
object-oriented programming. It is available online in HTML format, as well as in print.

Miscellaneous other introductory material, tutorials, whitepapers and articles are also 
available on the Gwydion Dylan site.
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Q&A

Fire away!
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